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Abstract. Analysis of tides and internal waves from model studies in the South 
China Sea is done using three techniques. We summarize results from standard 
Fourier methods, continuous wavelet analysis and the direct scattering transform. 
Because the Fourier and wavelet analysis are inherently linear methods their utility 
in application to nonlinear dynamics is often questioned. Nevertheless, they have 
shown to be useful in delineating first order dynamics (for example finding funda- 
mental modes). On the other hand the scattering transform, sometimes described 
as a 'nonlinear Fourier' technique, can in some cases succeed in elucidating non- 
linear dynamics where linear methods have proven less successful. We apply these 
procedures to model results from Lamb's 2D non-hydrostatic model applied to the 
South China Sea and in some cases the multi-component tides used to force the 
Lamb model. 

Keywords: Discrete fourier transform, Continuous wavelet transform, Direct 
scattering transform, Luyon strait, Internal gravity waves 

1 Introduction 

It is widely accepted that the first recorded internal wave was that described 
by J. Scott Russel. The correct mathematical framework for the phenomena 
came later with Korteweg and de Vries and their description of the KdV solu- 
tions to the one dimensional problem (see [1]) for a brief account of the early 
history of internal waves). Oceanic internal waves arise because of the natu- 

rally occurring stratification of the ocean's water column. As a result, internal 

waves arise throughout the earth's oceans. Well known examples include the 
internal waves observed in the Strait of Gibraltar and in the Sulu Sea. The 
University of Delaware maintains a website (http://atlas.cms.udel.edu/) con- 
taining an exhaustive catalogue of internal wave images eathered hv satellite 
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Internal gravity waves (IW) occur as a result of tidal flow over steep topog- 
raphy, for example, coastal shelves and deep water sills. As the tide flows over 
the topography the thermocline is depressed resulting in the generation of a 
bore. The bore propagates and its leading edge steepens through nonlinear 
effects. Thereafter, the bore degenerates into solitary waves through frequency 
and amplitude dispersion [1, 2]. 

Dispersive effects become increasingly evident as the IWs propagate, caus- 
ing the amplitudes and number of oscillations to vary over time. In this sense 
IWs are non-stationary, that is their spatial and temporal scales change as 
the IWs develop. 

Dispersion of IWs is commonly summarized in amplitude, wavelength, and 
velocity relations. For example the amplitude of a solitary wave depression 
can be plotted against its width (or half-width) over a range of propagation 
distances [3]. The amplitudes and widths are often obtained by inspection. 
While useful (and widely used) there remains some subjectivity involved in 
determining the participant values. 

Objective analyses exist to investigate non-stationary processes. They 
include statistical methods such as principle component analysis and time- 
frequency analysis including Fourier techniques, wavelets and multiscale anal- 
ysis. Recent studies have employed these tools to study a variety of problems 
(see for example [4]). 

This paper describes in some detail the application of three techniques to 
modeling results for IWs generated in the Strait of Luzon and propagating 
into the South China Sea. They are (1) the discrete Fourier transform (DFT), 
the direct scattering transform (DST), and (3) the wavelet transform (WT). 
Furthermore, analysis of tidal data used in driving the IW model is included 
for comparison. 

A good deal of interest exists concerning the generation and propagation 
of internal gravity waves in the South China Sea. As part of the Asian Seas 
Acoustics Experiment (ASIAEX), field measurements (encompassing a variety 
of platforms) took place in 2001 in South China Sea to quantify acoustic 
volume interaction during presence of solitary waves. Analysis of the field 
data showed the presence of solitary waves with amplitudes up to 160 m, and 
phase speeds of .83 m/s to 1.6 m/s [5]. The recent 2005 and 2006 Windy 
Island Experiment [6] measured amplitudes of up to 250 m and phase speeds 
up to 3.4 m/s. Recent modeling studies predict the occurrence of solitary 
waves consistent with those observed. The internal waves (IW) appear to be 
generated by deep water sills in the Luzon Strait. The IWs travel across the 
South China Sea towards the coast of China, their structure evolving as they 
propagate (see Fig. 1). 

In the following the model predictions are discussed in Sect. 2. The anal- 

ysis methods are briefly described in Sect. 3 in the following order, the DFT 
in Sect. 3.1, the DST in Sect. 3.2, and the WT in Sect. 3.3. Analysis of re- 
sults are then discussed in Sect. 4. A concluding summary is contained in 
Sect. 5. 
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Fig. 1: Taiwan is located at the uppermost edge of the image. The Luzon Strait spans 
the region running south towards the Philippines (not shown) at the lower boundary. 
Internal waves can be seen in the lower left quadrant propagating westward (from 
University of Delaware, Center for Remote Sensing, url: atlas.cms.udel.edu). 
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2 Model Predictions 

We have undertaken a model study of the area using the 2D ocean model 
developed by Kevin Lamb [2]. The model is initialized using analytic fits which 
approximate real density and bathymetry data. Internal waves are generated 
by tidal forcing from the Navy Coastal Prediction Model (NCOM) tidal model 
[7]. The results are discussed in the following paragraphs. 

Figure 2 shows results from Lamb's 2D ocean model after 70 hours of sim- 
ulation time. The density field is shown with several isopycnal lines spanning 
the domain of the upper 1000 m of ocean near the modeled sill of the Luzon 
Strait (the grey patch near the leftmost edge of the figure). Because the IWs 
described here begin as a tidal bore (a sharp depression of the pycnocline) and 
evolve into a group of solitary waves they can be identified throughout the 
domain as IW 'packets'. Three IW packets are easily noted located at ranges 
running east to west at —250 km, —550 km, and lastly near —700 km. The 
IWs are propagating toward a shelf located on the Chinese coast. 

As the IWs propagate it is apparent that the nature of the IW packet is 
qualitatively changing over time. The IW at —250 km is tightly packed with 
numerous oscillations, at —550 km the oscillations have separated with large 

400 300 
Range (km) 

200 100 

Fig. 2: Isopycnals (22.5-27, sigma-t units) are shown within the internal wave field. 
Results are from Lamb's 2D ocean model for the Luzon Strait. 
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amplitude oscillations at the leading edge of the IW packet, and still further 
at —700 km the separation continues, however the amplitude and number of 
oscillations has noticeably diminished. 

The goal of the analysis in this paper is to compare the results from three 
techniques for quantifying the evolution of the internal waves. Each provides 
a different and complementary view of IW behavior. 

3 Methods 

In this section the techniques used for analysis are described. The DFT and 
WT are briefly summarized along with a more detailed development of the 
direct scattering transform. The descriptions here are provided as a point of 
reference for the discussion that follows. More detailed information can be 
found in the references. 

3.1 Discrete Fourier Transform 

An estimate of the energy or power at a particular Fourier frequency or wave- 
length characterizing a sequence is sought. First note that the squared value 
of a sequence integrated over time is a measure of energy. In this case we have 
the following expression for the energy, E, of a sequence x(t) measured over 
time t with a period, L, 

\2 /   x(t) 
Jo 

E= /    x(tydt. (1) 

The amount of power, W, in the sequence over the period is therefore given 
by the following equation, 

i£«* p = - i x(tydt. 

The ideas above are implemented in a straight forward way by the pe- 
riodogram. The discrete version of the periodogram, Pxx, can be written as 
follows [8], 

p   _ \xL(f)\2 n) 

JsL' 

where 
L-l 

XL(!) = 5>L[n]exp(-2^/n//s), (4) 

is the discrete Fourier transform of the sequence x(t) and fs is the sampJing 
frequency. 

As will be seen in the following sections the DFT is more successfully 
applied to problems that are linear than to nonlinear problems like internal 
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waves. This leads one to speculate that perhaps a 'nonlinear' Fourier approach 
would prove more successful. The direct scattering transform is sometimes 
thought of as a nonlinear Fourier method in the sense that it uncovers con- 
stituent components in nonlinear problems. 

3.2 Direct Scattering Transform 

Next, we turn to the relationship between the (periodic, inverse) scattering 
transform and the (ordinary) Fourier transform, the interpretation of the for- 
mer as a nonlinear generalization of the latter, and the algorithm for comput- 
ing the DST spectrum of a data set. To this end, we begin by formulating the 
Korteweg-de Vries (KdV) equation, which describes the dynamics of weakly- 
nonlinear dispersive waves, for the internal-waves problem. 

Under the assumption that the internal solitary waves are 'long' and that 
they are traveling in a 'shallow' layer (this will be made more precise be- 
low), the governing (KdV) equation of the pycnocline displacement, which we 
denote by rj(x, t), is 

'h + coVx + o<VVx + PVxxx =0,    0 < x < L,    t>0, (5) 

where L(> 0) is the spatial period (i.e., the length of the domain), and the sub- 
scripts denote partial differentiation with respect to an independent variable. 
In addition, c0(> 0), Q(< 0), and /3(> 0) are (constant) physical parameters 
(see, e.g., Apel [1] for their interpretation). The simplest way to evaluate them 
is to assume a two-layer (density) stratification [9]. Then we have 

2      _ f 02 - Q\ \ (   hxh2   \ _ 3co (hi — h2\        a _ cohih2 

where hi and h2(> hi) are the distances from the unperturbed pycnocline to 
the free surface and to the ocean bottom, respectively, while Qi and Q2(> Qi) 
are the fluid densities in the top and bottom layers, respectively. Furthermore, 
we are interested in the periodic initial-value problem. That is to say, given a 
data set r](x, t = 0) such that r](x + L, 0) = n(x, 0) for 0 < x < L, we wish to 
determine its evolution rj(x, t) for t > 0. 

The strategy for solving the periodic KdV equation by the scattering trans- 
form can be split into two distinct steps: the direct problem and the inverse 
problem. The former, which is termed the direct scattering transform (DST), 
consists of solving the Schrodinger eigenvalue problem 

{-dxx - Kr)(x,0)}ip = £ip, (7) 

where K S a/(6/3) is a nonlinearity-to-dispersion ratio, ip is an eigenfnnction, 
and £ is a (real) spectral eigenvalue such that \[S is a (complex) wavenumber. 
For periodic signals, as we have assumed, it is well-known that the eigenvalues 
fall into two distinct sets [10]: the main spectrum, which we write as the set 
{£n}%!0, and the auxiliary spectrum, which we write as the set {/inln^o1' 

1 »f   '        il . 1 _fJ^ __ „  C  C I / • V l i\ 
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On the other hand, the inverse problem consists of constructing the nonlin- 

ear Fourier series from the spectrum {£n}u{n°} using Abeli&n hyperettiptic 
functions [10] or the Riemann ©-function [11]. In former case, which is the 
so-called //-representation of the scattering transform, the exact solution of 
(5), subject to periodic boundary conditions, takes the form 

f    N-l 2N       ~\ 

ti(z,t) = -<2'£ifin{x,t)-Yi£n[. (8) 
I     n=0 n=0       J 

It is important to note that all nonlinear waves and their nonlinear interac- 
tions are accounted for in this linear superposition. Unfortunately, the compu- 
tation of the nonlinear normal modes (i.e., the hyperelliptic functions fJ,n{x, i), 
0 < n < N — 1) is highly nontrivial; however, numerical approaches have been 
developed [12] and successfully used in practice [13, 14]. In addition, we note 
that the auxiliary spectrum, often referred to as the hyperelliptic function 
'phases,' is such that //° = /i„(0, 0) [10, 14]. 

Several special cases of (8) offer insight into why the latter is analo- 
gous to the (ordinary) Fourier series. In the small-amplitude limit, i.e., when 
maxIi( \fin(x,t)\ <C 1, we have fin(x,t) ~ cos(:r — uint + <pn), where un is 
a frequency and </>n a phase. Therefore, if we suppose that all the non- 
linear normal modes fall in the small-amplitude limit, then (8) reduces to 
the ordinary Fourier series. This relationship is more than just an analogy, 
Osborne and Bergamasco [15] give a rigorous derivation of the (ordinary) 
Fourier transform from the scattering transform. Next, if there are no inter- 
actions, e.g., the spectrum consists of a single wave (i.e., N = 1), wc have 
/j,o(x,t) = cn2(a; — u>ot + 0n|mo), which is a Jacobian elliptic function with 
modulus ??),()• In fact, it is the well-known cnoidal wave solution of the peri- 
odic KdV equation [1]. 

For the hyperelliptic representation of the nonlinear Fourier series, given 
by (8), the wavenumbers are commensurable with those of the ordinary Fourier 
series, i.e., kn = 2n(n+l)/L (0<n< N-l) [10, 13, 14]. However, this is not 
the only way to classify the nonlinear normal modes. One can use the 'elliptic 
modulus' (or, simply, modulus) mn, termed the 'soliton index,' of each of the 
hyperelliptic functions, which can be computed from the discrete spectrum as 

£2n+2 — ^2„+l .    . 
mn = — —,    0<n< N -I. (9) 

t2n+2 — fc2n 

Then, each nonlinear normal modes falls into one of three distinct categories 
based on its soliton index: 

1. m-n > 0.99 => solitons, in particular, cn2(x\m = 1) = sech (a;); 

2. mn   >  0.5 => nonlinearly interacting cnoidal waves (e.g., moderate- 
amplitude Stokes waves); 

3. mn <C 1.0 => radiation, in particular, cn2(x|m = 0) = cos2(.r). 

Furthermore, it can be shown [13, 14] that the amplitudes of the hyperel- 



230        J.A. Hawkins et al. 

A     . H(£ref-£2n+i), for solitons; 

\^(^2"^2 _ £an+i),    otherwise (radiation): 

where £ref = ^2n*+2 is the soliton reference level with n* being the largest n 
for which mn > 0.99. Then, clearly, the number of solitons in the spectrum is 
7Vsol =71*. 

To summarize: the DST consists of computing the amplitudes and degrees 
of nonlinearity (moduli) of the nonlinear normal modes. Furthermore, if the 
KdV equation governs (at least to a good approximation) the evolution of the 
data set, then the DST spectrum characterizes the dynamics for all time. If 
that is not case, then the DST provides an instantaneous projection of the 
dynamics onto the solution space of the periodic KdV equation, giving us a 
nonlinear characterization of the data set at a particular instant of time. 

In addition, the DST has been successfully employed in the Fourier-like 
decomposition of data from inherently nonlinear physical phenomena such as 
shallow-water ocean surface waves [13], laboratory-generated surface waves 
[14], and internal gravity waves in a stratified fluid [16]. Also, we note that 
the numerical implementation of the DST used in this paper is a modified 
version of Osborne's automatic algorithm [10], as described in [17]. 

Finally, we quantify the assumption of 'long, shallow-water' waves made 
above, so that the limits of the DST's applicability are clear. The latter as- 
sumption amounts to requiring that the largest, wave amplitude (denoted 
by ?7max = maxx.t |r;(a;,<)|) is much smaller than the top layer's depth, i.e., 
^max/fri ^ 1, and that the characteristic width of the waves is much greater 
than the top layer's depth, i.e., hy/A -C 1, where A can be taken to be, e.g., 
the largest half-width of the waves [1, 9]. Also, we may compute the (spatial) 
Ursell number of a data set, which is defined [14] as 

This gives an additional measure of the 'nonlinearity' of a wave train, with 
Ur ~ 1 being the limit of linear theory. 

3.3 Wavelet Transform 

While characterizing the scale of internal waves is important, it is equally 
important to know how that scale changes over time. In this regard the wavelet 
transform proves particularly useful. Here we discuss the application of the 
continuous wavelet transform and leave aside other multiscale analysis which 
can be useful in analyzing IW [18]. The general development of the continuous 
wavelet transform is well described in the literature [19, 20]. 

The wavelet transform Wg(s,x) of a spatial sequence f(x) can be defined 
as follows, 

Wg(s,x) = I gax,(x)f(x')dx', (12) 
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where the wavelets gsx>(x) are generated from the shifted and scaled versions 
of the mother wavelet g(x), 

1      fx-x'\ 
9sx'(x) = -7^9 [ —"— )- (13) 

where s and x' are real values that scale and shift the wavelet, respectively. 
Note that the wavelet transform is in fact a convolution of the wavelet g with 
the sequence f{x). 

In the work described here the continuous wavelet transform is used with 
the mother wavelet chosen to be the Morlet wavelet. This provides two advan- 
tages. First, as noted above the WT is a convolution of the wavelet with the 
sequence to be analyzed. Thus, the WT can be implemented using the convo- 
lution property of the Fourier transform, that is, convolution in space becomes 
a product of transforms in Fourier space. This property is employed in the 
algorithm described by Torrence and Compo [21] which is used here. In this 
formulation the discrete wavelet transform is the inverse Fourier transform of 
the following product, 

/v-i 

W„(s) = Yl fjy'isk^expiikjnSx), (14) 
3=0 

where / and g are the Fourier transforms of the sequence and wavelet, re- 
spectively. The second advantage the Morlet wavelet affords is that there is 
an explicit relationship between the wavelet scale s of a sequence and the 
standard Fourier components. This allows a direct comparison between the 
familiar DFT Fourier components and those obtained via the wavelet trans- 
form. The power of a wavelet component Wn is given by the amplitude squared 

4 Analysis 

The analytic methods just described can be applied to both linear and nonlin- 
ear problems. We discuss application to linear problems using tide data and 
to nonlinear problems using internal waves. 

Results from analysis of the data here can be grouped into two broad 
regimes. Characteristic scales can be discerned over illustrative segments of 
data which are short compared to the complete data set. Other patterns can 
only be made out if relatively long sequences are examined. Hence, in the 

following the analysis is divided into short and long data sequences. First, we 

investigate short segments of data in Sect. 4.1 and then longer data segments 
in Sect. 4.2. 
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4.1 Analysis: Short Data Sequences 

In this section we look at the frequency and spatial characteristics of short 
data segments using the DFT, DST, and WT. 

4.1.1 DFT 

For analysis, we use several datasets. First, we will look at DFT analysis of 
tidal velocities. This data is linear and is a good example of the strength of 
the DFT. We will then analyze a segment of the internal wave shown in Fig. 2 
using the DFT, the DST, and the wavelet transform. Finally, we will analyze 
a longer segment of the IW field using the windowed DFT and the WT and 
compare the results. 

First consider the tidal velocity over time (days) and its Fourier spectrum 
shown in Fig. 3. The upper panel shows tidal velocity taken from the NCOM 
tides model [7] sampled at roughly an hour (59 mins) over about 50 days. 
Qualitatively, we see many high frequency oscillations on the order of a day 
and a long (14 day) component modulating the entire time period. The lower 
panel is the power spectrum of the sequence. Note the large amplitudes near 
0.04 and 0.08 (h_1), these components correspond to 12.4 and 24 hr tidal 
components as expected. The long (14 day) modulation component is the so- 
called fortnight effect known to exist in this tide and can be seen very near 
the left edge of the plot. 

The DFT results for the tidal velocity clearly show the tide's component 
parts and are a good example of the utility of the DFT. In this case, tidal 
velocity, the dynamics are very nearly linear and hence it is a good candidate 
for analysis with the DFT. 

We now consider a segment of the internal wave field from Fig. 2. In the 
upper panel of Fig. 4 the segment shows the oscillating displacement of a 
single isopycnal (25.1 in sigma units) which is near a depth of —150 m when 
undisturbed and includes 8 distinguishable troughs, the largest of which at 
— 530 km reaching nearly —400 m. The segment is restricted to include only 
the internal wave 'packet' spanning a range between —550 km and —350 km. 
Here and in the coming discussion we will repeatedly examine this internal 
wave segment by a number of techniques. The lower panel shows the Fourier 
spectrum for the IW. It can be seen by inspection that the separation of the 
troughs of the IW in the upper panel are on the order of 25 km. The DFT 
spectrum shows the tides's Fourier components unevenly spread over a range 
near 25 km. This moderate spectral resolution giving the power in a range of 
components rather than clear peaks presents a limitation in the application 
of the DFT to IWs. The Welch spectrum is overlayed on the periodogram for 

comparison. While smoother, it nevertheless suffers the same problem with 
resolution. 
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14 days 

0 1 0 15 

Frequency(h ) 

Fig. 3: Upper panel shows average tidal velocity in the Luzon Strait. The lower panel 
shows the Fourier components for the tide obtained from the DFT. 

4.1.2 DST 

Because of the physical basis of the DST, it only makes sense to apply it to 
nonlinear wave phenomena that are governed (at least to a good approxima- 
ting hv thp Kr\V pniiatinn   Thprpfnrp   WP nnlv rnnsiHpT trip qnnlirat.inn of the 
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- Penodogram 

1             \ 25 km 

Welch spectrum 

1          \ 
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-\       / ^p\~~-M- A, -7 Vn-7 
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V w 
0.08 01 0.12 

Wavenumber (km  ) 

Fig. 4: Upper panel shows short segment of IW field taken from Fig. 1. Lower panel 
shows Fourier components calculated from the DFT. The periodogram (solid curve) 
and the Welch spectrum (dashed curve) are shown for comparison. Note that 25 km 
component 'disappears' as a result of smoothing the Welch spectrum. 
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Direct scattering transform spectrum ot the middle IW packet 
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1 1.5 

Wavenumber (m"1) 

Fig. 5: Scattering transform spectrum of the middle wave packet (range 
to —545 km). 

375 km 

DST to the internal wave segment. The spectrum of the middle wave packet 
(recall Fig. 2) is shown in Fig. 5. 

The DST finds 28 solitons in the data set traveling on a 'reference level' of 
— 158.8 m; the Ursell number is 3.209. Physically, the reference level (shown 
as a black, dashed horizontal line in Fig. 5 and those that follow below) can 
be understood as the location of the undisturbed isopycnal in the absence of 
anything but non-interacting (well-separated) solitons. All this means is that 
the amplitudes of the soliton nonlinear oscillation modes are measured with 
respect to this reference level. 

What is interesting about the DST spectrum is that it not only immedi- 
ately captures the six solitary waves visible in the data set but also finds a 
number of 'hidden' modes that cannot be found by observation. Moreover, 
the DST spectrum reveals that the visible solitary waves fall into two dis- 
tinct groups — the leftmost three waves and the one near —405 km form one 
group, while the ones near —445 and —425 km are part of another group. 
We can make this distinction because of the trends in the amplitude versus 

wavenumber plot of the spectrum given in Fig. 5. In other words, we see that 

the first four amplitudes' absolute values decrease essentially linearly with the 
wavenumber, and the slope of the line connecting them is about that of the 
line which connects the the crests of the leftmost three waves (and the one 
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near —405 km if it is 'moved' to be next to the latter ones). However, after 
the fourth mode in the spectrum, the trend of the nonlinear oscillations' am- 
plitudes changes abruptly, which signifies a break in the pattern, and the rest 
of the modes cannot be grouped with the first four. 

It may be surprising that there are 28 solitons in the spectrum of this 
wave packet, thus, one must keep in mind that these internal waves are highly 
nonlinear structures, while the KdV equation, which is the basis of the DST, 
governs the weakly-nonlinear limit. Therefore, we cannot say with certainty 
that there are precisely 28 solitons present in the data. However, we can, 
with a high degree of certainty, conclude that there are 'hidden' solitons and 
that solitons represent the energetic part of the spectrum (i.e., moderately 
nonlinear waves and radiation are hardly present, if at all). 

4.1.3 WT 

Here we will consider the wavelet transform of the IW segment previously 
discussed shown in the upper panel of Fig. 4 (the WT of tidal data will be 
considered in a later section). The results are shown in Fig. 6. Note that the x- 
axis duplicates that shown with the data sequence (between —550 and —350). 
In this sense the spectrum power is co-located near it's associated IW. The 
y-axis shows the Fourier wavelength associated with the wavelet scale. The 

Fig. 6: Wavelet spectrum for internal wave segment. Darker colors represent greater 
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spectrum shows components with significant energy spread over the region 
between —460 km and —540 km peaking near —510 km at a wavelength of 
near 30 km. The location of these components indicates that the primary char- 
acteristic lengths associated with the first few depressions are about 30 km. 

Note small increased areas of wavelet power near the ranges —530 km, 
—500 km, —470 km. These components are associated with individual troughs 
of the IW. This can be understood by recalling that the wavelet transform is 
a convolution of the wavelet with the waveform being analyzed. These small 
peaks come about when the probing wavelet becomes situated inside the IW 
troughs. As a consequence, the wavelet scale is on the order of the width of 
the troughs of IW. This feature is not observed with the DFT. 

The great advantage that the continuous wavelet transform enjoys is the 
ability to isolate the characteristic scales of IW. While the resolution is not 
to the extent that we have seen in the Fourier analysis of the tidal data 
(Fig. 3), nevertheless, the WT is able to locate the characteristic scales of 
IWs. Moreover, the WT localizes these scales in space. This feature holds the 
possibility that the scale of the IW can be tracked over time. This phenomenon 
is investigated more closely in the following sections. 

4.2 Analysis: Long Data Sequences 

As previously noted, internal waves are nonstationary in the sense that their 
characteristic spatial and temporal scales evolve over time. At its inception 
the IW packet is a single depression (or bore) in the isopycnal, which, upon 
propagation developes into a series of solitary waves through nonlinear disper- 
sion. These solitons grow in amplitude and separate, effectively lengthening 
the packet. The fully developed IW packet analyzed in the above sections is 
of this type. Further propagation leads to an IW packet whose constituent 
solitons has diminished in both number and amplitude. Thus, the three IW 
packets observed in Fig. 2 can be thought of as snapshots of a single IW packet 
over its lifetime. This pattern is repeated to varying degrees in most naturally 
observed IWs. The evolutionary aspect of IW dynamics is a good example of 
a nonstationary system. For this reason, it is instructive to investigate long 
data sequences to elucidate this behavior. 

In the following section, the windowed discrete Fourier transform is used 
to investigate tidal data. Subsequently, the long data sequence of the IW field 
is analyzed with the WT and and the DST. 

4.2.1 Windowed Discrete Fourier Transform 

We noted earlier that the DFT does not discern variations in time in the sense 
that the components discovered via the DFT occurred throughout the tidal 
time sequence. Some resolution in time can be gained by repeatedly applying 
the DFT within a short window which is 'slid' along the waveform being 
analyzed. This is the idea behind the windowed Fourier transform (WFT). 
Fig. 7a shows the results of applying the WFT to tidal data obtained from 
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Fig. 7: Tidal data analysis results: (a) windowed Fourier transform (b) wavelet, 
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NCOM and used to drive the Lamb model to generate internal waves. The 

x-axis is time and ranges over about 50 days and the ?/-axis is the usual 
Fourier frequency (h_1). With the spectrogram we can see variation over time 
of the frequency components of the tide. There are at least two peaks in the 
spectrum, one at 0.04 and another at 0.08 (h_1) associated with 12.4 and 24 
hr tidal period respectively. In analysis of the tidal data the WFT yields good 
time-frequency information. 

4.2.2 Wavelet Transform 

The wavelet transform can be considered a refinement of the WFT. Recall 
that the mother wavelet is scaled and shifted along the waveform to be tested 
yielding the wavelet spectrum. In this sense the WFT represents a crude 
wavelet which is a square wave that can be scaled and shifted along the wave- 
form, the resulting spectrum varying with both time and frequency. Noting 
this similarity it is not surprising that, we expect the wavelet transform to 
yield results similar to those of the spectrogram. 

Figure 7b shows the wavelet transform for the tidal data previously an- 
alyzed. Again we can make out the diurnal and semi-diurnal components of 
the tide. Qualitatively, the results are almost identical to those found using 
the WFT (excepting that the WFT returns the reciprocal of the period). 

Lastly we consider a series of three internal wave packets and analyze the 
result with wavelets. In Fig. 8 the upper panel shows the series of IWs and 
the lower panel the associated wavelet spectrum. The results show the gen- 
eration and evolution of the internal wave packets as they propagate toward 
the leftmost edge of the domain. 

The general features we saw previously (Fig. 6) are repeated for each of 
the packets (the middle packet being the one previously described). The peaks 
in the spectrum most closely associated with the leading edge of each of the 
IW packets, (—670 km, —500 km, -225 km) correspond to the characteristic 
wavelengths of the individual IW packets. The length increases from about 
10 km for the first packet to about 30 km for the middle packet and roughly 
35 km as the packet reaches the left boundary. The increase reflects the gradual 
increase in distance between troughs within each packet. 

Referring to the peaks in the wavelet spectrum allows us to draw attention 
to the wavelet component with the maximum intensity. However the peaks are 
surrounded by areas of high (relative to the background) intensity reflecting 
the fact that the spectrum is spread across wavelengths and ranges. In Fig. 8 
the concentration of spectral intensity 'spreads' with time so that we see the 
intensity of the spectrum for the IW packet at —225 km is well concentrated 
in range and wavelength, at -500 km the intensity measurably broadens and 

finally the intensity of the packet at —670 km is quite diffuse. The cause of 
this general dissipation could be from attenuation of the internal wave packet 
through either physical or numerical mechanisms. 
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Fig. 8: Wavelet transform spectrum for long time internal wave sequence. 

Finally note the peaks associated with individual troughs within each of 
the three packets where the wavelets 'fit' just inside the individuaJ troughs. 
The characteristic wavelength for these troughs does not appear to change 
significantly over the propagation distance. This indicates the general shape 
of the troughs is somewhat constant throughout, the domain. 
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4.2.3 Direct Scattering Transform 

Because the DST identifies the KdV-based nonlinear normal modes of the data 
set and their evolution, it would only make sense to perform a DST analysis of 
the entire isopycnal if it were governed by the KdV equation. Clearly, that is 
not the case as the solitary waves can 'age'. Therefore, in this subsection, we 
perform a 'windowed' scattering transform analysis of the full data set. That 
is to say, we take three snapshots of the evolution of the internal solitary waves 
and compute the DST spectrum of each. This approach is similar to that of 
Zimmerman and Haarlemmer [16], who computed the DST spectrum of their 
data at different times in order to identify the nonlinear normal modes that 
are invariants of the motion (i.e., those that do not change in time). 

To this end, in the top panel of Fig. 9, we show the DST analysis of 
the leftmost (farthest away from the sill) wave packet of the isopycnal under 
consideration. The middle wave packet, which was the subject of Sect. 3.2, 
is given in Fig. 5. And, the rightmost (closest to the sill) wave packet's DST 
spectrum is shown in the bottom panel of Fig. 9. For the leftmost packet, the 
DST finds 27 solitons traveling on a reference level of —151.3 m; the Ursell 
number of the data set is 2.008. On the other hand, for the rightmost wave 

-150* 

Direct scattering transform spectrum ot the leftmost IW packet 
»OOQOQOOQOOOpOOOOOqioOOOOOiOQOOti)1 5 

<e±t*Ht»±Sr<k**±i, 
H 8 10 

Wavenumber (m  ) 

Direct scattering transform spectrum of the rightmost IW packet 

1,5 

Wavenumber (m') 

Fig. 9: Top and bottom panels display the scattering transform spectra of the leftmost 
(range -150 km to -368 km) and rightmost (range -547 km to -750 km) wave 
packets of the isopycnal under consideration. 
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packet, the DST finds 52 solitons traveling on a reference level of -163.9; the 

Ursell number is 5.718. 
The first tiling we notice ia the similarity in die trend of one nonlinear aoi 

mal modes' amplitudes (i.e., the rate of increase/decrease of the amplitudes 
with the wavenumber) in each snapshot. As was the case for the middle inter- 
nal wave packet we discussed earlier, the largest amplitudes, which decrease 
quickly (in absolute value) with the wavenumber, are easily seen to be those 
of the solitary waves visible in the data set. Then, there is a large number 
of 'hidden' modes whose amplitudes' absolute values decrease approximately 
linearly with the wavenumber. Furthermore, the spectrum of each wave packet 
is clearly dominated by solitons, as the amplitudes of the nonlinear normal 
modes with moduli mn < 0.99 are very small (in absolute value) in compar- 
ison with the soliton modes. Again, we emphasize that we cannot be certain 
whether there are precisely 52 or 28 solitons in the respective internal wave 
packets. Nonetheless, the DST provides concrete evidence of the nonlinear 
and evolving nature of the packets. Moreover, there is no doubt that solitons 
are the most prominent part of the spectra, and that their number decreases 
as the internal wave packets propagate away from the sill. 

Furthermore, though for the first wave packet (see top panel of Fig. 9) the 
non-soliton normal modes are mostly radiation, as their moduli are mn <C 1, 
for the middle and rightmost wave packets (see Figs. 5 and bottom panel of 9) 
we observe more nonlinear normal modes to the right of the 'soliton cutoff' of 
approximately 1.3 x 10-3 m-1. This correlates with the fact that the Ursell 
number of this wave packet is the largest of the three - almost twice that of 
the middle packet and three times that of the leftmost packet. Moreover, this 
result is consistent with the fact that farther away from the sill the internal 
waves are, the closer their dynamics are to the KdV (and, eventually, linear) 
ones. 

5 Summary 

Data and model studies of internal gravity waves show that their generation 
and evolution is accompanied by changes in their characteristic spatial and 
temporal scales. This nonstationary, dispersive behavior arises from nonlinear 
elements in IW dynamics. In IW studies, dispersion is commonly summarized 
in amplitude, wavelength, and velocity relationships. Often these are con- 
structed by inspection. In the work described here, objective, analytic tools 
are employed to investigate the non-stationary behavior of IWs. 

In this paper, three methods have been applied to internal wave data 
generated by Lamb's [2] model designed to simulate IWs observed in the Luzon 

Strait and South China Sea. They are the following: (1) the discrete Fourier 
transform, (2) the direct scattering transform and (3) the wavelet transform. 
The analysis has been applied to linear tide data, to 'short' internal wave data 
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and to 'long time' segments. Each method yields positive results which in some 

cases are complementary (DFT, WT) and in some cases unique (DST). 
The DST allows for a truly nonlinear analysis of the internal waves mu 

provides a measure of the applicability of the Korteweg-de Vries equation. 
While the DST does not necessarily give precise quantitative results that can 
be used for predictive purposes, it provides a 'genuinely nonlinear' decomposi- 
tion of the data set. In particular, the DST spectra of the snapshots of a wave 
packet at different stages of its evolution allow us to see the 'nonlinear mode 
conversions' taking place over time and provides an understanding of solitary 
wave 'aging' in terms of these modes (notice the decrease in the number of 
nonlinear oscillation modes for wavenumbers between 0 and = 5 x 10-4). 

The discrete Fourier transform, the windowed Fourier transform and the 
wavelet transform res present a continuum of Fourier based approaches to 
investigate IWs. Each yields the Fourier components of the internal waves 
and further, the WT (thought of in terms of a refined WFT) provides a 
view of how these modes change over time. In this regard, we have seen that 
the WT elucidates the evolving character of internal waves thus providing 
a time/frequency picture of the evolving dynamics of the internal wave over 
long periods. 

In summary, each technique can be seen to provide positive recognizable 
details of IW dynamics. It is not uncommon to find that what is obvious to 
the naked eye cannot be verified by reasonable examination. Thus, while the 
results described in this paper fall short of a complete quantitative description 
of IW dynamics, nevertheless, that these methods support and expand on 
what can be seen 'by eye' is a nontrivial result. Certainly, the entire catalogue 
of analyses applicable to the investigation of internal waves has not been 
addressed here. However those described here represent a span of means by 
which to investigate internal wave dynamics. Moreover, it is reasonable to 
expect that further work will yield more quantitative results. 
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